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ABSTRACT 45 

Accurate precipitation data is fundamental for understanding and mitigating the disastrous effects 46 

of many natural hazards in mountainous areas. Floods and landslides, in particular, are potentially 47 

deadly events that can be mitigated with advanced warning, but accurate forecasts require timely 48 

estimation of precipitation, which is problematic in regions such as tropical Africa with limited 49 

gauge measurements. Satellite rainfall estimates (SRE) are of great value in such areas, but 50 

rigorous validation is required to identify the uncertainties linked to SRE for hazard applications. 51 

This paper presents results of an unprecedented record of gauge data in the western branch of the 52 

East African Rift, with temporal resolutions ranging from 30 min to 24 h and records from 1998 53 

to 2018. This data was used to validate the Tropical Rainfall Measuring Mission (TRMM) Multi-54 

satellite Precipitation Analysis (TMPA) Research Version and Near Real-Time products for 3-55 

hourly, daily, and monthly rainfall accumulations, over multiple spatial scales. Results indicate 56 

that there are at least two factors that led to the underestimation of TMPA at the regional level: 57 

complex topography and high rainfall intensities. TMPA Near Real-Time shows overall stronger 58 

rainfall underestimations, but lower absolute errors and a better performance at higher rainfall 59 

intensities compared to the Research Version. We found area-averaged TMPA rainfall estimates 60 

relatively more suitable in order to move towards regional hazard assessment, compared to data 61 

from scarcely distributed gauges with limited representativeness in the context of high rainfall 62 

variability. 63 

 64 

1. Introduction 65 
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Hydrometeorological hazards triggered by extreme rainfall, such as floods and rainfall-initiated 66 

landslides, pose a serious socioeconomic threat in many parts of the world and more particularly 67 

in mountainous areas (Kjekstad and Highland 2009; Jacobs et al. 2016a; Alfieri et al. 2017; Kumar 68 

et al. 2017). Moreover, in the context of ongoing climate change, it is estimated that rainfall 69 

extremes may intensify, particularly in the tropics (IPCC 2013; Gariano and Guzzetti 2016; 70 

Souverijns et al. 2016, Thiery et al. 2016), which would also increase the vulnerability of the 71 

population (Washington et al. 2006). Accurate rainfall data are fundamental to better 72 

characterizing extremes as well as ultimately mitigating the weather-related hazards in areas such 73 

as tropical Africa. Hydrometeorological hazards (herein referring to both hydrological and 74 

hydrologically-triggered hazards such as landslides), can be related to high intensity - short 75 

duration events and/or long duration rainfall (Gariano and Guzzetti 2016; Sidle and Bogaard 76 

2016). High-resolution rainfall data are therefore fundamental for accurate hazard assessment 77 

(Brunetti et al. 2018; Kirschbaum and Stanley 2018).  78 

 79 

Ground-based rainfall measurements in tropical Africa are either sparse or nonexistent and often 80 

include erroneous data or large gaps (Serrat-Capdevila et al. 2016; Dezfuli et al. 2017b). Main 81 

reasons are the lack of African states’ means and political will or interest to support such data 82 

collection, as well as the relatively high cost of establishing and maintaining infrastructure in these 83 

areas (Washington et al. 2006; Monsieurs et al. 2017). This problem is even more prominent in 84 

mountainous areas, where rainfall presents large spatial variability due to strong topographic 85 

transitions (Dinku et al. 2008) and the susceptibility to hydrometeorological hazards is generally 86 

high (Sidle and Bogaard 2016). Spatial and temporal discontinuities in rainfall data from gauges 87 

limit the ability to study regional extremes over a long record. In addition to the constraints on data 88 
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availability in space and time, the use of rain gauges comprise a range of error sources for rainfall 89 

measurements such as, e.g., rainfall undercatch and gauge malfunctioning (Sevruk et al. 2009; 90 

Grimaldi et al. 2015, and references herein). Finally, the latency for data availability generally 91 

hampers the development of hazard early warning systems (Gebregiorgis et al. 2017).  92 

 93 

Satellite rainfall estimates (SRE) with high spatial and temporal resolution and large areal coverage 94 

provide an opportunity for regional rainfall data acquisition in remote areas. Yet, SRE remain an 95 

ongoing challenge (Hobouchian et al. 2017; Rossi et al. 2017; Brunetti et al. 2018). Visible and 96 

infrared sensors on board geostationary satellites infer surface rainfall based on cloud albedo and 97 

cloud top temperature, respectively (Kidd 2001). The dominant associated uncertainties emanate 98 

from warm-rain processes in the development stage of deep convection in tropical areas or 99 

orographic enhancement of rainfall (Dinku et al. 2008, 2010), and subcloud evaporation 100 

(Mashingia et al. 2014; Hobouchian et al. 2017). Passive microwave sensors on low earth orbiting 101 

satellites allow more accurate estimates of instantaneous rainfall by observing the precipitation 102 

signal within or beneath the cloud (Kidd and Huffman 2011). However, cold surfaces and ice cover 103 

may be wrongly interpreted as rainy scenes, and the low observation frequency is problematic 104 

(Dinku et al. 2010; Kummerow et al. 2015). Better results for accurate rainfall estimation can be 105 

achieved by products derived from the combination of microwave observations (high quality 106 

rainfall observation) and infrared observations (higher spatiotemporal resolution and continuous 107 

sampling) (Ebert 2007; Kidd and Huffman 2011; Salio et al. 2015; Gebregiorgis et al. 2017; 108 

Poméon et al. 2017). Still, these combined products suffer strong uncertainties in topographically 109 

complex terrain (Derin and Yilmaz 2014; Zambrano-Bigiarini et al 2017) and over areas 110 
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comprising inland water bodies, inducing a complicated microwave signal due to the cold water 111 

and the warm land (Tian and Peters-Lidard 2007). 112 

 113 

This paper focuses on the Tropical Rainfall Measuring Mission (TRMM) Multi-satellite 114 

Precipitation Analysis (TMPA) product for six reasons. TMPA (1) is currently amongst the most 115 

widely recognized multi-satellite rainfall products (Gebregiorgis et al. 2017; Hobouchian et al. 116 

2017); (2) was designed to improve tropical rainfall observations by combining microwave and 117 

infrared rainfall estimates, at a spatial resolution of 0.25° × 0.25° and 3-hourly temporal resolution 118 

(Huffman et al. 2007); (3) provides one of the longest consistent records (1998 – present) of freely 119 

available, spatially homogeneous SRE products over the tropics; (4) has been validated with 120 

satisfactory results in many parts of the world (Dinku et al. 2008; Habib et al. 2009; Islam et al. 121 

2012; El Kenawy et al. 2015; Munzimi et al. 2015); (5) was proven successful in several 122 

hydrometeorological hazard applications (e.g., Li et al. 2009; Kirschbaum et al. 2015; Yaduvanshi 123 

et al. 2015; Cullen et al. 2016; Abdelkareem 2017; Kumar et al. 2017; Thiery et al. 2017; 124 

Kirschbaum and Stanley 2018); and (6) serves as important input data for high-resolution satellite-125 

based rainfall estimates such as CHIRPS (0.05°, Funk et al. 2015). While the TRMM satellite is 126 

no longer operating, the multi-satellite TMPA product will continue to be produced until the 127 

Integrated Multi-satellitE Retrievals for Global Precipitation Measurement (IMERG; 2014 - 128 

present, 0.1°, half-hourly) retrospective reprocessing is completed (expected by late-2018). This 129 

reprocessing will provide a higher spatial and temporal resolution from 2000 to present, and will 130 

extend the latitudinal coverage to 65°N-S (Huffman et al. 2015).  131 

 132 
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Rigorous validation is necessary to characterize uncertainties in the SRE records in order to more 133 

effectively use these data for hydrometeorological hazard modelling and support local authorities 134 

in risk management (Mashingia et al. 2014). Even though many current SRE data are freely 135 

available, little validation has been done on a regional scale in tropical Africa, particularly at daily 136 

and sub-daily time scales and in mountainous regions (Cattani et al. 2016). In this paper, we 137 

therefore aim to evaluate the TMPA product over a data-scarce region in tropical Africa with 138 

complex topography. We focus on the western branch of the East African Rift, a region known for 139 

being highly susceptible to hydrometeorological hazards (Maki Mateso and Dewitte 2014; Jacobs 140 

et al. 2016a, 2017; Monsieurs et al. 2017, 2018; Stanley and Kirschbaum 2017). The paper is 141 

organized as follows: section two describes the validation region and the data used for analysis, 142 

section three outlines the validation approach, section four provides results of this approach, and 143 

the final section discusses the findings. A list with acronyms is given in Appendix 1. 144 

 145 

2. Setting and data description 146 

a) Study area 147 

The validation region stretches over the western branch of the East African Rift from Lake 148 

Tanganyika up to the Rwenzori Mountains (Fig. 1). The regional climate is driven by three 149 

principal surface airstreams and two major surface convergence zones (Fig. 1). A comprehensive 150 

description of the complex system of climate drivers in Equatorial Africa is given by Dezfuli 151 

(2017a). The region has a bimodal rainfall regime (Fig. 2), with the first rainy season starting in 152 

September (Monsieurs et al. 2018). While December to February is considered a ‘dry’ season 153 

(Nicholson 1996), results from the average monthly TMPA data in Fig. 2 show that there are still 154 
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over 100 mm of average rainfall, whereas the period from June to August can clearly be 155 

distinguished as a dry season 156 

 157 

Rainfall anomalies are related to the strong interannual variability of the ITCZ (Souverijns et al. 158 

2016), El Ninõ-Southern Oscillation and Indian Ocean Dipole events (Behera and Yamagate 2001; 159 

Shaaban and Roundy 2017). This is reflected by the large standard deviations of monthly rainfall 160 

in Fig. 2. In addition, the local climate is strongly modulated by the complex rift topography 161 

(Jacobs et al. 2016a; Smets et al. 2016), and the presence of large lakes (Thiery et al. 2015; 162 

Docquier et al. 2016). Consequently, there is large rainfall variability across the study area. The 163 

complex topography, presence of lakes, and variable rainfall regimes within the study area 164 

represent many of the typical features that pose difficulties for estimating rainfall from satellite 165 

observations. 166 

 167 

Several types of natural hazards threaten the densely populated areas in the study region, including 168 

hydrological (e.g., flood) and geophysical hazards (e.g., earthquake, volcanic eruption, landslide), 169 

and their interactions (Jacobs et al. 2016b, 2017; Michellier et al. 2016; Delvaux et al. 2017; Thiery 170 

et al. 2017; Nobile et al. 2018). Similar to rain gauge data collection, collecting information on 171 

hydrometeorological hazards is tedious in the study area (Monsieurs et al. 2017, 2018) and beyond 172 

the scope of the present study. Fig. 2 provides a summary of the most extensive landslide hazard 173 

inventory currently available in the region, which is an updated version of the inventory compiled 174 

by Monsieurs et al. (2018) comprising 199 landslide events with known location and date over a 175 

time span of 50 years (1968 – 2018). There is a clearly observable signal related to the wetting of 176 
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the soil throughout the two rainy seasons and subsequent landslide occurrences, which reach a 177 

peak in May. 178 

 179 

b) Data description 180 

1) RAIN GAUGE DATA 181 

Gauge data with a sampling frequency of one day or better were collected for 24 gauges from a 182 

variety of sources, including international research projects, universities, and local research, 183 

religious, and governmental institutions. In addition, a gauge network was installed and maintained 184 

as part of the RESIST and AfReSlide projects since 2014 (http://resist.africamuseum.be/; 185 

http://afreslide.africamuseum.be/) which comprises 10 gauges in the Rwenzori Mountains 186 

(Uganda) and 12 on the Rift flanks in DR Congo. These gauges have a temporal resolution ranging 187 

between 30 min and one hour. The 46 gauges in total (herein referred to as ‘gauge network’) cover 188 

the latitudinal range of the study area; however an optimal distribution of gauges in the longitude 189 

is mainly hampered by inaccessibility due to low levels of security west of Lake Kivu (Fig. 3). 190 

Minimum and maximum rain gauge elevations in this network are 664 m and 2435 m, with a mean 191 

of 1600 m and a standard deviation of 428 m. The temporal extent of the gauge data over the 192 

TMPA record used in this study (1/1/1998 – 1/1/2018) is presented in Fig. 4. This gauge network 193 

currently represents the most extensive data compilation from gauges with a temporal resolution 194 

of 24 h or better over the study area. Moreover, validation of SRE in Equatorial Africa has, to the 195 

authors’ knowledge, never been performed with a comparable rain gauge density at the present 196 

spatiotemporal resolution. However, continuous time series are almost non-existent because of 197 

frequent power outages and political instabilities in the region. Hence, it is not feasible to limit the 198 
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validation to only the period when all gauge data temporally overlap. We therefore consider all 199 

data presented in Fig. 4 for further analyses, keeping in mind that gauges with long records may 200 

have a stronger influence on the results. An extended description of the gauge network installation, 201 

maintenance, and data preparation is given in Supplementary Material. 202 

 203 

Six gauges coincide with gauges in the Global Precipitation Climatology Centre (GPCC) network 204 

used for TMPA calibration. Gauges used for satellite rainfall calibration should mostly be avoided 205 

for validation (Dinku et al. 2010), although this has not always been the case (Su et al. 2008; 206 

Poméon et al. 2017). However, we choose here to include these six gauges for validation, because 207 

of the limited data availability in this region, but also because GPCC gauge data are only used to 208 

adjust the monthly bias (Huffman and Bolvin 2014) and the day-to-day relative variations in rain 209 

are driven entirely by the satellite data. 210 

 211 

The 46 gauges are located in 31 different TMPA pixels. Eight TMPA pixels contain more than one 212 

gauge, with a total amount of 23 gauges. Gauge data within the same TMPA pixel are not averaged 213 

so that all (TMPA, gauge) pairs are evaluated in a consistent way. In addition, averaging of gauge 214 

data within each TMPA pixel would decrease the magnitude of extreme rainfall events, which are 215 

of high relevance for hydrometeorological hazard assessment. Instead, we treat the multiple gauge 216 

data within the same TMPA pixel as independent comparisons, each of which are assigned the 217 

same TMPA value when temporally overlapping. The gauge network comprises 20 gauges that 218 

are located in TMPA pixels containing inland water bodies (Fig. 3). 219 

 220 
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2) TMPA DATA 221 

The TMPA algorithm uses instruments on board TRMM to serve as calibration standard for a 222 

network of passive microwave sensors. Gaps in the high quality microwave observations are filled 223 

in using microwave-calibrated infrared data, thus allowing TMPA to provide coverage from 50°N-224 

S every 3 hours (Huffman et al. 2007; 2017). The average revisit time of the microwave 225 

observations changes with latitude and available sensors (Hou et al. 2014; Nelkin 2017). TMPA 226 

represents a snapshot at some point during the 3-hour window, i.e., not the actual 3-hourly average 227 

rain rate (Villarini and Krajewski 2007) over an area of ~775 km² (at the equator). TMPA data are 228 

available as a variety of products (Huffman et al. 2007). The Research Version (3B42, Version 7, 229 

herein referred to as TMPA ResV) is available from 1/1/1998 to present, over 50°N-S, with a 0.25° 230 

x 0.25° - 3 h spatiotemporal resolution. This version uses Precipitation Radar (PR) and TRMM 231 

Microwave Imager (TMI) for calibration of all passive microwave inputs, and is also calibrated 232 

against the gauge-based GPCC rainfall data on a monthly basis, though the correction ratio is 233 

limited to between 0.2 and 3.0 mm/hour (Huffman et al. 2007). Due to this post-processing, TMPA 234 

ResV is only available after 2 months (Huffman and Bolvin 2014). The Near Real-Time product 235 

(3B42RT, Version 7, herein referred to as TMPA RT) has the same spatiotemporal resolution and 236 

is available from 1 March 2000 to present, with post-processing limited to TMI-only calibration 237 

(Huffman et al. 2010). On the other hand, the latency of TMPA RT is only eight hours and it has 238 

a spatial extent from 50°N-S with experimental data currently extending from 50 to 60° N-S. 239 

Further details can be found in Kummerow et al. (2000, 2015) and Huffman et al. (2007, 2017). 240 

 241 



12 
 

TMPA ResV and RT were downloaded from NASA Goddard Earth Sciences Data and Information 242 

Services Center (https://disc-beta.gsfc.nasa.gov/). Accumulations are computed taking into 243 

account the local time zone and gauge accumulation period. We only use TMPA data when 244 

corresponding gauge data were available. The equivalent time series for TMPA ResV and RT 245 

comprise 92,941 and 87,357 days, respectively. 246 

 247 

3. Methodology 248 

Taking the spatiotemporal constraints of the gauge dataset into account (Fig. 3, Fig. 4), we adopted 249 

a validation scheme that checks multiple validation approaches and spatiotemporal scales, 250 

providing a broad picture of TMPA’s error characteristics. We focus on illustrating the differences 251 

between the two TMPA products towards providing insights for their use in hydrometeorological 252 

hazard assessment. However, assessing the hazards themselves is out of the scope of this work. 253 

Namely, the identification of rainfall thresholds for triggering hazards will be done in a separate 254 

study. 255 

 256 

a. Validation statistics 257 

In this work three validation approaches are used. All statistical tests are described in Table 1, 258 

based on the overview of standard and diagnostic validation methods by Wilks (2006) and Ebert 259 

(2007). The entire validation was performed using the R open-source software, release 3.3.2 260 

(http://www.r-project.org/). The first approach comprises visual comparison of the rainfall value 261 

distributions, using quantile-quantile (QQ) plots. The second validation approach measures 262 

https://disc-beta.gsfc.nasa.gov/
http://www.r-project.org/
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TMPA’s accuracy for continuous variables including rainfall amount and intensity, while 263 

normalizing by the gauge-measured rainfall rate of the respective period. This approach relies on 264 

a combination of accuracy metrics to evaluate scatter, or random error, by use of the Pearson 265 

correlation coefficient (COR); error direction, by Normalized Mean Error (NME; also known as 266 

mean bias); error magnitude, by Normalized Mean Absolute Error (NMAE); and importance of 267 

extremes, by Normalized Root Mean Square Error (NRMSE). Lastly, TMPA’s accuracy in rainfall 268 

detection is evaluated based on a contingency table (Table 2). A comprehensive statistic 269 

summarizing the contingency table is the Heidke Skill Score (HSS) (Heidke 1926; Wilks 2006). 270 

HSS measures how well estimates perform compared to random chance, with negative values 271 

indicating a worse performance than random chance, positive values indicating a better-than-272 

random performance and a value of one corresponding to perfect skill. For the purpose of 273 

evaluating SRE for hydrometeorological hazard applications, additional highly relevant metrics 274 

are the Probability of Detection (POD) and the Probability of False Alarm (POFA) (Martelloni et 275 

al. 2012; Rossi et al. 2017; Thiery et al. 2017). The use of the term POFA is preferred above false 276 

alarm ratio (Wilks 2006) because of its common confusion with false alarm rate which is a 277 

different metric (Barnes et al. 2009). POD refers to TMPA's ability to correctly identify rain 278 

occurrence, i.e., separate wet and dry days or, if rain thresholds are imposed to evaluate TMPA's 279 

efficiency in identifying heavy rains, separating days drier or wetter than the threshold. POFA 280 

works the same way with respect to thresholds. 281 

 282 

b. Spatiotemporal validation scales 283 
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Validation has been conducted for three temporal rainfall accumulation periods: 3-hourly (TMPA 284 

native resolution), daily, and monthly. We focus mostly on the daily time scale to utilize the entire 285 

gauge dataset, since 35% of the gauges have no sub-daily information. Furthermore, daily 286 

resolution is highly relevant for regional hazard model calibration due to the dearth of information 287 

on the exact time of the occurrence of hydrometeorological hazards (e.g., Kirschbaum et al. 2015), 288 

especially in the context of Central Africa (Jacobs et al. 2016a; Monsieurs et al. 2018). 289 

Mountainous environments, however, are characterized by high rainfall variability and induce 290 

accelerations of streamflow volume concentration that might cause hydrometeorological hazards 291 

such as flash floods (Devrani et al. 2015). Therefore, we validated TMPA on a 3-hourly resolution 292 

for the rainy seasons in 2016, i.e. March – May and September – November, using 13 gauges 293 

from the network we maintain with sub-daily temporal resolution and which have data over the 294 

selected period. Lastly, TMPA performance is tested on a monthly scale, because accumulated 295 

antecedent rainfall conditions are proven to play a crucial role for hazards such as landslides 296 

(Segoni et al. 2018). However, monthly TMPA accumulations are strongly influenced by GPCC. 297 

Only continuous metrics are computed at the monthly scale as detection of rainfall for monthly 298 

accumulations is irrelevant to SRE skill evaluation. Months comprising gaps have been excluded 299 

from this analysis. 300 

 301 

We evaluated the different temporal rainfall accumulations by season, ground conditions, and 302 

rainfall characteristics. These factors are known to affect the errors in SREs (Kidd and Huffman 303 

2011). Two elevation classes (500 – 1700; 1700 – 2500 m a.s.l.) are chosen such that the amount 304 

of gauge data in each class is approximately equal. A threshold of 100-mm average monthly 305 

rainfall was chosen to define wet versus dry periods and test the impact of seasonality on TMPA’s 306 
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performance (Fig. 2). To evaluate TMPA’s sensitivity to rainfall intensity, data were grouped into 307 

ten intensity classes as measured by the gauges, and adapted from Kim et al. (2017). 308 

 309 

In addition to the spatial grouping by elevation, we selected four gauges from three contrasting 310 

environments (further referred to as ‘context’): (1) the Lake Kivu area, with TMPA pixels having 311 

more than 35% of their surface covered by water, (2) the region above 1700 m in the Rwenzori 312 

Mountains, characterized by very complex topography, and (3) the comparatively low-altitude 313 

continental environment of Eastern Rwanda, with an average altitude of 1480 (±80) m for the four 314 

gauges (Fig. 3). The first two contexts include exclusively gauges that we maintain, of which all 315 

available data are included for this analysis. No information on the data quality is available in the 316 

third context group, for which data from 2012-2015 has been selected in order to evaluate SREs 317 

over a similarly long time period with almost no data gaps. The selected gauges and time periods 318 

are highlighted in Fig. 4. Analyses are performed at daily and monthly temporal resolution, 319 

elucidating the impact of these different ground conditions to the performance of TMPA. 320 

 321 

c. Point-to-pixel approach 322 

The sparse and temporally and spatially heterogeneous gauge coverage does not allow for an 323 

accurate rainfall interpolation, especially given the strong topographic gradients within the 324 

domain. Therefore, gauge data are not extrapolated and aggregated to TMPA’s resolution, as 325 

recommended by Chen and Knutson (2008). Instead we apply the point-to-pixel validation 326 

approach (Islam et al. 2010; Thiemig et al. 2012; El Kenawy et al. 2015). A severe limitation to 327 
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this approach is the discrepancy between local-scale gauge data and spatially averaged TMPA data 328 

in the context of local convective storms and orographic rainfall.  329 

Local rainfall variability brings uncertainty in the gauge data used as a reference to validate TMPA. 330 

This source of uncertainty is especially relevant for extreme rainfall analyses (Chen and Knutson 331 

2008; Sun and Barros 2010). To evaluate the gauge data uncertainty, we study the correlation and 332 

standard deviation of the daily rainfall accumulations from the simultaneously but independently 333 

measuring gauges in a pixel. Five TMPA pixels contain two gauges and one pixel contains four 334 

gauges with overlapping time series. There are a total of 3,599 (ResV), 3651 (RT) overlapping 335 

days between intra-pixel gauges over these six pixels, with an average overlap per pixel of 604 336 

days. The average distance between the gauges in one pixel is 18.72 (±7.28) km. The measures on 337 

local rainfall variability within a pixel are compared with TMPA uncertainty in the respective 338 

pixel, calculated by the mean Residual Standard Error (ResSE) of TMPA. ResSE (mm/day) is 339 

calculated as the square root of the mean squared residual in a simple linear model for TMPA with 340 

gauge data as independent variable. We have to take into account that ResSE is affected by the 341 

uncertainty of both TMPA and gauge data.  342 

 343 

d. Analyses of extremes 344 

A final analysis considers TMPA’s performance in capturing extreme rainfall events. The hundred 345 

highest daily rainfall events for TMPA and gauge data over the same spatial and temporal domain 346 

are evaluated, of which the ten highest records are related to reported hydrometeorological hazards. 347 

Information on hydrometeorological hazards is collected using the following principal sources: 348 

Monsieurs et al. (2018) (Fig. 2), http://reliefweb.int, http://floodlist.com, http://www.emdat.be, 349 
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http://www.glidenumber.net, Vandecasteele et al. (2010), and Jacobs et al. (2016a). Analyses are 350 

performed for the time period March 2000 to January 2018 in order to be able to compare for each 351 

event the three datasets, i.e. gauge, TMPA ResV and RT.  352 

 353 

4. Results 354 

Validation results relevant for using TMPA in hydrometeorological hazard assessment are firstly 355 

presented for the daily temporal resolution, allowing a broad picture of TMPA’s performance over 356 

multiple spatiotemporal scales. This is followed by the 3-hourly and monthly validation results for 357 

the selected gauges and time periods. Lastly, we show the analyses on daily extremes related to 358 

hydrometeorological hazards for the entire gauge network. Results for TMPA ResV and RT data 359 

products are compared to analyse the trade-offs for the short latency of TMPA RT data, as 360 

compared to the supposedly improved ResV product.  361 

 362 

a. Daily resolution 363 

1) REGIONAL PERFORMANCE  364 

Overall, we found that TMPA RT underestimates rainfall (negative NME) on average more 365 

severely (40.35%) at the regional scale compared to the ResV (15.15%) (Table 3A). The QQ plot 366 

(Fig. 5) confirms that the TMPA distributions significantly differ from that of gauge data, from 367 

which RT deviates more severely. The correlation between both data sets at a daily scale is 368 

moderately low (COR, Table 3A). While TMPA ResV has lower rainfall underestimations 369 

compared to TMPA RT, the mean absolute error is higher (NMAE, Table 3), which implies that 370 

NMAE is largely driven by random errors that cannot be reduced by gauge correction. The regional 371 
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detection skills are relatively good (Table 3A). However, these metrics have a relatively high 372 

standard deviation, indicating a significant variation in performance among the gauges.  373 

 374 

When grouping the validation by elevation, we are able to reveal an improvement of the correlation 375 

between TMPA RT and the gauges, which outperformed TMPA ResV for both elevation 376 

categories. Average daily TMPA rainfall underestimation is lower for low-altitude sites (Table 377 

3B). The other statistics do not significantly vary for the two elevation categories (Table 3B), 378 

pointing to no obvious topographic control on the correlation and detection skills on a regional 379 

scale.  380 

 381 

Rainfall underestimation by TMPA, error magnitude and importance of outliers tend to increase 382 

during the drier months of the year (Table 3C). Even though HSS is similar for wet and dry months, 383 

the POD is higher and POFA lower for the wet months (Table 3C). The higher correlation for the 384 

relatively dry months is related to the many zero-rain days.  385 

 386 

When examining the performance of TMPA as a function of daily rainfall intensities, we found 387 

that all rainfall intensities above 5 mm/day are underestimated by TMPA with increasing 388 

magnitudes for higher rainfall intensities (Table 3D). We note that at the lowest intensities, 389 

disproportionally high normalized errors are due to the normalization against low gauge averages. 390 

In terms of rain detection, the HSS decreases for higher rainfall intensities but remains positive at 391 

all rain intensities, indicating a declining performance in rain detection but still better than random 392 

chance (Table 3D). The POD has relatively high values at 0 and 1 mm/day, but declines with 393 
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increasing rainfall intensities. The probability of false alarms increases for higher rainfall 394 

intensities, but drops to zero for the threshold above 60 mm/day in the RT version just because no 395 

values appear above this threshold due to strong underestimation (Table 3D).  396 

 397 

2) CONTEXT-BASED EVALUATION 398 

TMPA was evaluated for three contrasting contexts in order to quantify the extent to which the 399 

validation results are affected by water-land mixed pixels (‘mixed’) and complex topographical 400 

environments at higher altitudes (‘complex topography’) as compared to a reference lower-401 

elevation continental context (‘low’). The correlation between TMPA and gauge data within the 402 

complex topography context is lowest compared to that in mixed and low-topography contexts 403 

(Table 4A), with TMPA ResV consistently showing lower values. TMPA’s performance for pixels 404 

characterized with a complex topography is also significantly lower (Table 4A) with respect to 405 

average underestimation, error magnitude, importance of outliers, and rainfall detection skill 406 

(HSS). However, POD and POFA results do not show the same trend, these two statistics being 407 

lowest in mixed pixels (Table 4A).  408 

 409 

Separating wet and dry months results in TMPA performance significantly lower in mixed pixels 410 

than complex topography and low contexts during dry months, according to the Pearson 411 

correlation coefficient, HSS, POD, and POFA (Table 4B). Regarding the rainfall intensity control, 412 

HSS and POD are found to degrade most severely with increasing intensities in complex 413 

topographic conditions (Table 4C). 414 

 415 
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Looking at the complete picture of validation results over different ground contexts in different 416 

seasons and grouped by rainfall intensities, we found TMPA overall encounters greatest 417 

difficulties in correctly estimating rainfall in complex topographical contexts compared to mixed 418 

and low contexts (Table 4). We studied another facet of the orographic control, namely the effect 419 

of leeward versus windward mountain side, on the daily TMPA performance by testing separately 420 

two gauges from each flank of the Rwenzori Mountains (NW: UG6, UG9; SE: UG3, UG4, Fig. 421 

3), knowing that the SE flank is the rain shadow side (Jacobs et al. 2016). Validation results for 422 

COR, NME, HSS and POFA are significantly better for the rainy side of the mountain (NW). 423 

Rainfall is more severely underestimated on the rain shadow (SE) side, with NME = -39.23 424 

(ResV), -49.47 (RT), compared to the NW flank where NME = -14.91 (ResV), -26.73 (RT). 425 

 426 

3) INTRA-PIXEL VARIABILITY 427 

The most meaningful evidence for estimating gauge data uncertainty is found in the pixel with 428 

four gauges, which allows a more robust estimation of the correlation and standard deviation of 429 

the daily samples. With about 700 days of overlapping gauge data, analysing this single pixel is 430 

statistically significant from the temporal point of view. A representative time series was chosen 431 

over a one-month period, from 4 September to 4 October 2015, in order to show the daily rainfall 432 

variability measured by the four gauges in one pixel (Fig. 6). We observe that while the average 433 

correlation between the four gauges is only ~0.29 (ResV: 0.293; RT: 0.296), the average gauge-434 

TMPA correlation is higher ~0.34 (ResV: 0.335; RT: 0.336) (Table 5). The problem of this high 435 

inter-gauge variability is confirmed by the much improved gauge-TMPA correlation when first 436 

averaging the gauge data: ~0.47 (ResV: 0.472; RT: 0.470). This shows that TMPA validation is 437 
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strongly biased by the poor representativity at the pixel scale of the field evidence we use as 438 

control data. 439 

We quantify the gauge data uncertainty by the average daily standard deviation between gauge 440 

data, which is for the pixel containing four gauges ~4 mm/day (ResV: 4.03; RT: 3.92). The error 441 

on TMPA RT data with respect to ground "truth" is slightly lower than the uncertainty in the 442 

gauge data (Table 5). Taking into account that this error is affected by the uncertainty of both 443 

TMPA and gauge data, we can therefore conclude that most of the residual error is linked to the 444 

uncertainty on gauge data and TMPA appears as a good performing indicator of relative rainfall 445 

at pixel scale in the study area. If we correct for TMPA underestimation, it may also be considered 446 

as working well in absolute terms.  447 

Using TMPA ResV data adds uncertainty to the recognized gauge data uncertainty, with a higher 448 

value of TMPA ResSE compared to the average standard deviation in the gauge data (Table 5). 449 

This is in line with our earlier findings, namely that that the gauge-calibrated TMPA ResV product 450 

has a lower accuracy in the study area compared to TMPA RT. Owing to this, we propose that 451 

TMPA RT data are a better rainfall proxy than TMPA ResV data in the study area. 452 

However, with one single pixel, we cannot illustrate a possible spatial variability in gauge 453 

uncertainty. Therefore we present also results for the five pixels containing two gauges, but with 454 

a prior call for caution in discussing them as two samples are far from ideal to get realistic standard 455 

deviation estimates and tend to underestimate them on average. Results show values of ~2.4 456 

(ResV: 2.44; RT: 2.42), which are smaller compared to the standard error on residuals for TMPA 457 

in the respective pixels (ResV: 5.22; RT: 3.28) (Table 5). These results confirm that a large part 458 
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of the uncertainty in TMPA is related to the gauge uncertainty, and that TMPA ResV introduces 459 

more uncertainty in the data compared to TMPA RT. 460 

These results highlight the high local rainfall variability over the study area and suggest that 461 

multiple rain gauges are needed to represent the rainfall in a 25 km x 25 km area (TMPA pixel 462 

size). Hence, the limited quality of SRE validation at the TMPA resolution might be partly due to 463 

the inadequacy of using individual rain gauges as reference data. This also highlights the relevance 464 

of TMPA area-averaged rainfall estimates for regional hydrometeorological hazard analyses in 465 

this area, as point-observations represent only a small area in the proximity of the gauge. 466 

 467 

b. 3-hourly and monthly resolution 468 

We also tested TMPA’s performance at its 3-hourly native resolution during the rainy seasons of 469 

2016. Validation results in Table 6 are fairly similar to, though slightly lower than, the results 470 

obtained for daily rainfall accumulations (Table 3). Yet, results for POD are lower and POFA 471 

higher (Table 6A) than those for the daily values (Table 3). When grouping for rainfall intensities, 472 

we find zero probability of detection for rainfall intensities higher than 25 mm/3 hour although 473 

TMPA recorded 74 events above this threshold (Table 6B). Also POFA degrades quickly for any 474 

rainfall detection per 3 hours (Table 6B). Differences between the performance of both TMPA 475 

products at 3-hourly resolution is small overall, with the RT version generally performing better 476 

for COR, NMAE, NRMSE (Table 6). 477 

 478 

Validation results for monthly rainfall accumulations show an expected significant improvement 479 

relative to 3-hourly and daily TMPA rainfall estimates (Table 7A). In an explorative focus on 480 
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monthly values over four gauges from each ground context (Fig. 3, Fig. 4), TMPA encounters 481 

more difficulties over complex topographic terrain (Table 7B), confirming earlier findings at daily 482 

resolution (Table 4).  483 

 484 

c. Daily extremes related to hydrometeorological hazards 485 

 In addition to the above intensity-grouped analyses, TMPA’s performance for high intensity 486 

events is evaluated by examining the 100 highest recorded daily rainfall events from the gauge and 487 

TMPA datasets for the time period March 2000 to January 2018, referred to as ‘extremes’. The 488 

highest daily rainfall recorded by TMPA ResV (93 mm/day) and RT (57 mm/day), is markedly 489 

lower than that of the gauges (142 mm/day) (Fig. 7A, B). Fig. 7A and 7B plot TMPA ResV and 490 

RT against gauge values for the 100 most extreme gauge and TMPA ResV records respectively. 491 

Results indicate an asymmetric behaviour of the recorded extremes, i.e., all gauge extremes are 492 

underestimated by TMPA (Fig. 7A), whereas most (but not all) TMPA extremes overestimate 493 

rainfall measured by the gauges (Fig. 7B), with a bigger bias magnitude in the former case (Fig. 494 

7C) than in the latter (Fig. 7D). Fig. 7B clearly illustrates the difference between TMPA ResV and 495 

RT as a result of the correction of TMPA ResV through calibration with gauges on a monthly 496 

basis. While this correction results in an average lower bias between gauge and SRE values (Table 497 

3A), it tends to be problematic for extreme rainfall intensities recorded by TMPA, resulting in 498 

increased discrepancy between ResV and gauge data in the study area. Limiting the gauge 499 

adjustment factor to a narrower range could result in better SRE for TMPA ResV.  500 

 501 
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When considering the top ten gauge extremes for an exploratory analysis on hazard-triggering 502 

rainfall events, results indicate that TMPA misses or severely underestimates them (Fig. 7C). By 503 

contrast, TMPA extremes overestimate gauge-measured rainfall intensities, especially in their 504 

ResV form (Fig. 7D, Appendix 2). The ten TMPA and gauge extremes were matched with reported 505 

hydrometeorological hazards in the corresponding pixels (Fig. 7C, D, see top ten TMPA RT 506 

extremes in Appendix 2). We found seven out of the top ten gauge extremes to be related with 507 

hydrometeorological hazards, either flooding, landslides, or flash floods. Because of the 508 

remoteness of large parts of the study area, there may be unreported hazard occurrences. Six 509 

(ResV) and two (RT) out of the respective top ten TMPA extremes are also related to 510 

hydrometeorological hazards, even though some were completely missed by the corresponding 511 

field data (Fig. 7D, event 6; see RT extremes in Appendix 2).  512 

 513 

4. Discussion 514 

Results of the TMPA ResV and RT analysis identify several biases inherent to SRE and gauge 515 

field data in the study area that should be taken into account when interpreting the validation 516 

results. First, whereas we initially considered gauge data as a ‘ground truth’ for SRE validation, 517 

intra-pixel rainfall analyses have shown that gauge point observations are not necessarily 518 

representative of the average rainfall over the ~2525 km area of a TMPA pixel at daily resolution 519 

(Fig. 6; Table 5). We found that most of the error on TMPA data with respect to gauge data is 520 

linked to the uncertainty in the gauge data (Table 5). This confirms the concerns raised by Satgé 521 

et al. (2016), who analysed the impact of the gauge representation error on daily rainfall detection 522 

metrics. It certainly is a major control on the quality of TMPA validation, which is inevitably 523 
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degraded if a single reference gauge is unable to record local convective storms that cause heavy 524 

rains elsewhere in the TMPA pixel or, conversely, records very local heavy rain not representative 525 

at the pixel scale. In principle, this issue should be less acute for higher-resolution SRE, such as 526 

IMERG. The improvement obtained by averaging multiple gauge data within a pixel is in the line 527 

of previous findings showing that spatiotemporal averaging substantially reduces biases and 528 

improves performance (Mantas et al. 2015; Tan et al. 2017; Tang et al. 2018). Second, gauge data 529 

themselves are likely underestimating rainfall due to wind undercatch, which is known as a severe 530 

source for systematic bias (in the order of ~20%) in gauge-based measurements (Sevruk et al. 531 

2009; Mekonnen et al. 2015).  532 

 533 

There are very few studies that use a similar study domain and validation context (spatiotemporal 534 

resolution, tropical environment, validation approach), limiting a comparison of our results with 535 

existing literature. Yuan et al. (2017) validated daily TMPA ResV in the tropical monsoon area of 536 

the Chindwin River basin, Myanmar (22-27°N) by applying normalized validation metrics over 537 

the time period April 2014 - December 2015. There, TMPA ResV regional performance is lower 538 

than in the western branch of the East African Rift, showing a maximum COR of 0.356, NMEs 539 

ranging between -41.2% and +5%, POD between 0.092 and 0.299, and POFA between 0.404 and 540 

0.626. A 1998-2006 study of TMPA (mainly ResV) in the La Plata basin, South America (Su et 541 

al. 2008) found for the tropical Upper Paraguay area a POD and POFA of 0.36 and ~0.70, 542 

respectively, for rainfall > 20 mm/day, which is better compared with values of 0.14 and 0.75 in 543 

our study area (Table 3D). Potential explanatory differences between the two regions might 544 

include a larger number of gauges and generally lower elevations and relief in the Upper Paraguay 545 

area.  546 
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 547 

The agreement between gauge and TMPA was reduced at TMPA’s native temporal resolution, i.e., 548 

3-hourly, to a significant extent only for NMAE, NRMSE, POD, and POFA, whereas the average 549 

bias, Pearson correlation coefficient, and overall detection skill (HSS) were found similar to those 550 

at the daily scale (Table 3A, Table 6). A study by Scheel et al. (2011) found a significantly lower 551 

correlation coefficient (0.018) in sub-tropical Bolivia for TMPA at 3-hourly resolution. By 552 

contrast, spatiotemporal averaging substantially reduces biases and improves performance 553 

(Mantas et al. 2015; Tan et al. 2017), as confirmed by the better monthly TMPA validation results 554 

in Table 7 and other studies in the same area (Adeyewa and Nakamura 2003; Munzimi et al. 2015).  555 

 556 

The separate assessment of wet and dry periods (defined based on a 100 mm threshold for monthly 557 

average rainfall, Fig. 2) revealed TMPA’s performance to be lowest for several metrics (NRMSE, 558 

POD, POFA) during the dry months (Table 3, Table 4). One possible cause for the poorer 559 

performance during the dry season is subcloud evapotranspiration (Mashingia et al. 2014; 560 

Hobouchian et al. 2017). Greater evaporation means that, for the same amount of rain produced in 561 

the cloud aloft (and hence the same ice scattering signature used in the passive microwave 562 

algorithm to estimate the surface rain rate), the rain that actually reaches the surface is lower, 563 

leading to a higher probability of false alarms during the dry season. Serrat-Capdevila et al. (2016) 564 

also found smaller errors in TMPA within areas that follow the seasonally oscillating ITCZ, 565 

attributing this observation to the dependence of TMPA quality on the associated convective 566 

rainfall regime. The relatively poor performance of TMPA during the dry months has limited 567 
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implication on hazard prediction, as hydrometeorological hazards will generally occur less 568 

frequently in this period (Fig. 2).   569 

 570 

With 20 out of 46 gauges being located in TMPA pixels containing large inland water bodies, the 571 

evaluation results are likely to be affected by detection problems of SRE over water-land mixed 572 

pixels (e.g. Huffman et al. 2007; Derin and Yilmaz 2014), and thus potentially do not represent 573 

the true TMPA performance. A comparison of the validation of mixed pixels only (Table 4) against 574 

the overall TMPA performance (Table 3) shows a strong degradation of the results during dry 575 

months (Table 4B) but, surprisingly, an otherwise increase in TMPA performance compared to the 576 

regional validation results (Table 3), with COR reaching 0.45 for TMPA RT in mixed pixels (Table 577 

4A). By contrast, a more rugged topography seems to impact the results towards an overall lower 578 

TMPA performance (Table 3, Table 4). In terms of local elevation, TMPA is better correlated with 579 

field data and provides more accurate rainfall estimation for lower elevations (< 1700 m a.s.l.) 580 

(Table 3B). This is possibly due to the occurrence of orographically-controlled rainfall at higher 581 

elevations. Many studies have underlined the difficulty for SRE to estimate such rainfall compared 582 

to convectively-driven rainfall (Dinku et al. 2010; Mantas et al. 2015; Serrat-Capdevila et al. 583 

2016). This is also confirmed here by the poorer performance of TMPA over the complex 584 

topographical setting in the Rwenzori Mountains with respect to mixed pixels and pixels in lower-585 

altitude continental environments (Table 4).   586 

 587 

TMPA’s performance is drastically degraded for higher rainfall intensities (Table 3D, Table 4C, 588 

Table 6B). Decreased detection skills and a transition from over- to underestimation by TMPA 589 
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when gauge-based rainfall increases is consistent with previous studies (e.g., Dinku et al. 2008; 590 

Vila et al. 2009; Scheel et al. 2010; Gao and Liu 2013; Satgé et al. 2016). As a consequence, high-591 

intensity storms and extreme events are especially poorly reproduced in SREs (Fig. 7). Even 592 

though TMPA uses a combination of several satellite estimates, if a sub-daily event is of short 593 

duration and high intensity, the satellite microwave observations may entirely miss these peak 594 

intensities given the 3+ hour revisit time in this area (Huffman at al. 2007). While infrared data 595 

are used to fill in gaps between microwave overpasses, this data may also be biased by the 596 

relationship between cloud top temperatures and rainfall intensities in this complex climatologic 597 

and topographic setting (Huffman et al. 2007; Kidd and Huffman 2011). Improvements are 598 

expected for extreme rainfall detection using IMERG, as shown already in other parts of the world 599 

(Prakash et al. 2016a; Hobouchian et al. 2017; Xu et al. 2017).  600 

 601 

A performance comparison between TMPA ResV and RT indicates that the latter underestimates 602 

rainfall on average more severely over the entire range for all different spatiotemporal scales. 603 

While this agrees with the overall findings of previous studies and is explained by the lack of 604 

gauge-based adjustment of TMPA RT (e.g., Habib et al. 2009; Shen et al. 2010; Prakash et al. 605 

2016b; Satgé et al. 2016), values for correlation, absolute error, sensitivity to outliers, and 606 

categorical validation metrics show here overall better results for TMPA RT compared to TMPA 607 

ResV (Table 3, Table 4, Table 6, Table 7). In contrast to what has been argued in the previous 608 

studies, this better performance of RT data is most likely related to the fact that, due to the sparsity 609 

of gauge data in Central Africa, the GPCC-based monthly correction applied to TMPA ResV does 610 

not adequately represent the rainfall variability over the study area. Regarding the use of TMPA 611 

for flood simulations, some studies have shown increased uncertainties associated with the 612 
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adjusted TMPA ResV product compared to the RT product (Su et al. 2008; Bitew and 613 

Gebremichael 2011). This might be related to our results on extreme rainfall events, with TMPA 614 

RT extremes lying closer to the corresponding gauge values than the ResV extremes (Fig. 7B, D). 615 

In addition, the intra-pixel analysis has shown that the TMPA ResV product adds uncertainty to 616 

the recognized gauge data uncertainty, whereas the uncertainty in TMPA RT is mainly related to 617 

the gauge data uncertainty (Table 5). Hence, given its short latency and better performance TMPA 618 

RT is probably more relevant in hazard applications over the western branch of the East Africa 619 

Rift.  620 

 621 

5. Conclusion 622 

While widely available, there remain challenges for accurate rain detection and quantification of 623 

SREs. This paper outlines SRE uncertainties in a sparsely gauged, low-latitude region with 624 

complex topography in the western branch of the East African Rift. TMPA RT and ResV were 625 

evaluated at multiple spatiotemporal scales from 1998 to 2018 with an unprecedented dataset of 626 

46 gauges. Results indicated that the sparse and heterogeneous temporal gauge coverage and high 627 

rainfall variability in the study region poses challenges for TMPA validation. The validation 628 

approach allowed detection of trends and sources of bias in TMPA, and will be applied to the 629 

validation of IMERG as soon as the reprocessed product, spanning from 2000 to present, will be 630 

available in late-2018. The latter’s higher spatiotemporal resolution will allow a more effective 631 

use of gauge data for validating rainfall with high variability, which is a cause of large uncertainties 632 

in TMPA. Results indicate that TMPA performs relatively better in areas without complex 633 

topography, and systematically underestimate precipitation for rainfall > 5 mm/day. TMPA 634 
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performance decreases in predictive power during the dry months. Validation results for 3-hourly 635 

and daily TMPA are found very similar, whereas the performance significantly increases for 636 

monthly rainfall accumulations. Trade-offs for the short latency of TMPA RT were found to be 637 

small, showing overall higher bias with gauge data, but better rainfall detection skills and lower 638 

absolute errors compared to TMPA ResV, probably as a result of the latter’s gauge-based 639 

calibration. TMPA’s error characteristics highlighted in this paper will improve the efficient use 640 

of TMPA in hydrometeorological hazard applications. Especially in the study region, TMPA is 641 

indispensable to provide the regional rainfall information required in hazard assessment, owing to 642 

the sparse gauge network. Despite the key challenges identified for satellite rainfall detection by 643 

TMPA in the western branch of the East African Rift, and as long as IMERG products are not 644 

available over a long period of time, TMPA remains one of the best sources of regional rainfall 645 

information available in the study area. However, and although we recognized that weaknesses of 646 

the gauge data might be partly responsible for the somewhat disappointing quality of our validation 647 

results, TMPA should be used with caution for hazard assessment. 648 
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A1. List of acronyms and abbreviations used in this paper. 678 
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Table A1 here. 679 

A2. Top ten most extreme rainfall events measured by TMPA Near Real-Time. 680 

Figure A2 here. 681 
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TABLES 966 

TABLE 1. Validation metrics for the evaluation of satellite rainfall estimates (SRE). G refers to gauge observations, S to satellite 967 

observations. 𝑮̅,  𝑺̅ are the means and δG, δS are the standard deviations of G and S respectively. N is the total amount of observations. 968 

The terms in HSS, POD, and POFA are explained in Table 2. Normalized metrics are expressed in %, all metrics are unitless. 969 

Statistical measure Equation Range Optimum 

Score 

Description 

Pearson correlation 

coefficient 

𝐶𝑂𝑅 =
∑ (𝐺𝑖
𝑁
𝑖 − 𝐺̅)(𝑆𝑖 − 𝑆̅)

√∑ (𝐺𝑖
𝑁
𝑖 − 𝐺̅)² √∑ (𝑆𝑖

N
𝑖 − 𝑆̅)²

 
[-1, 1] 1 

Reflects the degree of linear correlation between SRE 

and gauge observations. 

Normalized Mean Error 

(%) 
𝑁𝑀𝐸 =

∑ (𝑆𝑖−𝐺𝑖)
𝑁
𝑖

∑ 𝐺𝑖
𝑁
𝑖

 x 100 [-100, +∞] 0 Average difference between SRE and gauge observations. 

Overestimation is represented as positive bias. 

Normalized Mean 

Absolute Error (%) 
𝑁𝑀𝐴𝐸 =

∑ |𝑆𝑖−𝐺𝑖|
𝑁
𝑖

∑ 𝐺𝑖
𝑁
𝑖

 x 100 [0, +∞] 0 Mean magnitude of the errors without considering 

their direction. 

Normalized Root Mean 

Square Error (%) 𝑁𝑅𝑀𝑆𝐸 =
√
1

𝑁
∑ (𝑆𝑖−𝐺𝑖)²
𝑁
𝑖

1

𝑁
∑ 𝐺𝑖𝑁
𝑖

 x 100 [0, +∞] 0 
Mean magnitude of the errors, giving greater weight to 

the larger errors.  

Heidke Skill Score 𝐻𝑆𝑆 =
2(𝑎𝑑 − 𝑏𝑐)

(𝑎 + 𝑏)(𝑐 + 𝑑) + (𝑎 + 𝑏)(𝑏 + 𝑑)
 [-∞, 1] 1 Fractional improvement of SRE over random forecast.  

Probability of Detection 𝑃𝑂𝐷 =
𝐻𝑖𝑡

𝐻𝑖𝑡 + 𝑀𝑖𝑠𝑠
 [0, 1] 1 Likelihood that the event would be forecasted, given 

that it occurred. 

Probability of False 

Alarm 
𝑃𝑂𝐹𝐴 =

𝐹𝑎𝑙𝑠𝑒 𝐴𝑙𝑎𝑟𝑚

𝐻𝑖𝑡 + 𝐹𝑎𝑙𝑠𝑒 𝐴𝑙𝑎𝑟𝑚
 [0, 1] 0 Proportion of forecasted events that fail to materialize. 

970 
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TABLE 2. Contingency table for categorical validation metrics. SRE = satellite rainfall estimate. Letters a-d are the same as in Table 1 971 

for HSS. 972 

  Gauge > 0 Gauge = 0 

SRE > 0 Hit (a) False Alarm (c) 
SRE = 0 Miss (b) Correct Negative (d) 

973 
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TABLE 3. Summary of validation results for daily TMPA Research Version (ResV) and Near 974 

Real-Time (RT) products (both Version 7). Validation statistics include: Pearson correlation 975 

coefficient (COR), Normalized Mean Error (NME), Normalized Mean Absolute Error (NMAE), 976 

Normalized Root Mean Square Error (NRMSE), Heidke Skill Score (HSS), Probability of 977 

Detection (POD), and Probability of  False Alarm (POFA). The number of days used for analyses 978 

in each category is given under ‘Days’.  A: Regionally calculated metrics. B: Elevation groups, 979 

given in m a.s.l.. C: Groups based on average monthly rainfall (Fig. 2). D: Intensity groups, all in 980 

mm/day (bold numbers referring to the thresholds used for the calculation of HSS, POD, and 981 

POFA). Standard deviations (Stdev) for regionally calculated metrics are presented between 982 

brackets.  983 
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   COR NME NMAE NRMSE HSS POD POFA Days 

   ResV RT ResV RT ResV RT ResV RT ResV RT ResV RT ResV RT ResV RT 

A. Regional 0.38 0.37 -15.15 -40.35 108.29 97.58 231.10 217.33 0.36 0.36 0.64 0.63 0.30 0.30 
92941 87357 

(Stdev) (0.10) (0.11) (21.36) (15.50) (14.70) (9.80) (35.62) (31.29) (0.10) (0.09) (0.07) (0.06) (0.09) (0.09) 

B. <1700 m 0.39 0.47 -13.12 -38.17 108.26 97.45 239.91 225.89 0.39 0.38 0.66 0.65 0.34 0.34 49226 47264 

>1700 m 0.34 0.48 -28.32 -49.46 102.82 94.67 220.34 208.93 0.41 0.41 0.64 0.63 0.30 0.30 43715 40093 

C. >100 mm/month 0.34 0.35 -20.57 -43.90 104.76 95.29 208.59 196.91 0.34 0.34 0.66 0.65 0.29 0.28 69592 65450 

<100 mm/month 0.42 0.43 -26.67 -44.42 112.40 103.92 387.13 375.31 0.37 0.36 0.57 0.56 0.56 0.57 23349 21907 

D. 0 mm/day NA NA NA NA NA NA NA NA 0.40 0.39 0.65 0.64 0.32 0.32 51160 47901 

<1 mm/day 0.06 0.05 473.30 308.84 575.68 413.34 1213.07 873.19 0.40 0.36 0.61 0.56 0.39 0.50 9566 9157 

1-5 mm/day 0.08 0.08 45.62 2.05 146.01 111.09 242.43 166.11 0.33 0.19 0.42 0.24 0.51 0.64 13980 13224 

5-10 mm/day 0.07 0.07 -27.81 -48.93 82.65 75.18 103.64 87.13 0.26 0.10 0.29 0.10 0.60 0.74 7529 7069 

10-15 mm/day 0.04 0.03 -46.81 -62.06 73.87 72.95 84.72 79.78 0.20 0.05 0.20 0.05 0.69 0.81 4327 4023 

15-20 mm/day 0.02 0.02 -58.48 -70.34 71.80 74.44 79.20 79.61 0.15 0.03 0.14 0.03 0.75 0.85 2345 2195 

20-25 mm/day 0.06 0.07 -59.74 -71.32 69.09 73.58 75.45 78.30 0.11 0.02 0.10 0.01 0.81 0.90 1510 1424 

25-30 mm/day 0.04 0.05 -66.29 -76.41 72.40 77.54 78.03 81.23 0.09 0.01 0.07 0.01 0.84 0.94 944 887 

30-60 mm/day 0.05 0.08 -72.66 -81.29 75.59 81.57 81.36 85.68 0.03 0.00 0.02 0.00 0.94 0.00 1426 1339 

>60 0.09 0.13 -82.78 -87.51 82.78 87.51 87.28 90.51 (0.03 0.00) (0.02 0.00) (0.94 0.00) 154 138 

 984 

 985 

 986 

 987 

 988 

 989 
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 990 

TABLE 4. Evaluation of daily TMPA ResV and RT products in different contexts on the ground. 991 

Mixed: pixels that include large water bodies, Co. Topogr.: complex topographic terrain, Low: 992 

relatively low terrain. For each of these contexts four gauges have been selected (indicated in Fig. 3, 993 

Fig. 4). A: Averaged metrics per category. B: Elevation groups, given in m a.s.l.. C: Groups based on 994 

average monthly rainfall (Fig. 2). D: Intensity groups, all in mm/day (bold numbers referring to the 995 

thresholds used for the calculation of HSS, POD, and POFA).  996 
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 997 

 998 

      COR NME NMAE NRMSE HSS POD POFA Days 

      ResV RT ResV RT ResV RT ResV RT ResV RT ResV RT ResV RT ResV RT 

A.   Mixed 0.43 0.45 -9.80 -43.94 106.97 92.44 215.94 199.21 0.34 0.34 0.60 0.60 0.30 0.30 2396 2396 

    C. Topogr. 0.34 0.39 -33.94 -44.80 103.23 100.46 213.94 215.57 0.29 0.29 0.65 0.65 0.35 0.36 4530 4614 
    Low 0.43 0.50 -8.55 -28.73 108.51 98.31 255.88 230.30 0.44 0.43 0.66 0.64 0.37 0.37 4350 4350 

B. 

M
ix

ed
 

>100 mm/month 0.41 0.43 -10.98 -45.28 102.97 89.11 190.65 175.92 0.30 0.31 0.62 0.62 0.22 0.22 1728 1728 

  <100 mm/month 0.22 0.19 6.42 -25.68 161.52 137.96 414.99 381.34 0.19 0.18 0.44 0.44 0.69 0.70 668 668 

  

C
o

. T
o

p
o

gr
. 

>100 mm/month 0.34 0.33 -34.24 -45.57 102.63 100.29 208.23 211.36 0.27 0.26 0.65 0.65 0.34 0.35 3499 3583 

  
<100 mm/month 0.31 0.33 -32.51 -41.09 106.15 101.31 236.67 230.30 0.35 0.36 0.67 0.67 0.40 0.39 1031 1031 

  

Lo
w

 >100 mm/month 0.41 0.42 -7.30 -30.79 108.30 97.22 231.34 207.62 0.41 0.39 0.66 0.63 0.33 0.33 3247 3247 

  <100 mm/month 0.40 0.53 -23.86 -3.46 111.15 111.66 431.79 404.35 0.41 0.41 0.67 0.68 0.60 0.61 1103 1103 

C. 

M
ix

ed
 

0 mm/day NA NA NA NA NA NA NA NA 0.34 0.34 0.60 0.60 0.30 0.30 1197 1197 

  0-5 mm/day 0.16 0.14 114.49 26.26 217.42 140.77 376.13 228.30 0.35 0.47 0.48 0.49 0.52 0.36 733 733 

  5-25 mm/day 0.14 0.16 -37.05 -59.96 75.21 72.29 91.96 84.88 0.21 0.28 0.18 0.18 0.71 0.25 399 399 

  >25 mm/day -0.13 -0.11 -62.96 -77.32 69.11 77.32 78.56 83.59 (0.21 0.28) (0.18 0.18) (0.71 0.25) 67 67 

  

C
o

. T
o

p
o

gr
. 0 mm/day NA NA NA NA NA NA NA NA 0.29 0.29 0.65 0.65 0.35 0.36 2233 2314 

  0-5 mm/day 0.16 0.17 84.29 50.56 183.52 154.93 324.09 264.46 0.30 0.28 0.39 0.34 0.52 0.51 1336 1339 

  5-25 mm/day 0.10 0.11 -57.68 -64.99 73.67 74.87 87.58 88.11 0.07 0.03 0.05 0.02 0.76 0.80 789 789 

  >25 mm/day 0.15 0.19 -78.51 -83.04 79.11 83.04 86.28 89.43 (0.07 0.03) (0.05 0.02) (0.76 0.80) 172 172 

  

Lo
w

  

0 mm/day NA NA NA NA NA NA NA NA 0.44 0.43 0.66 0.64 0.37 0.37 2803 2803 

  0-5 mm/day 0.19 0.21 85.62 36.73 183.37 140.54 338.38 232.36 0.39 0.45 0.45 0.47 0.49 0.41 854 854 

  5-25 mm/day 0.17 0.18 -34.65 -48.39 77.62 74.41 99.27 89.59 0.12 0.17 0.13 0.13 0.85 0.73 617 617 

  >25 mm/day 0.18 0.21 -67.77 -74.38 73.07 77.20 80.07 82.36 (0.12 0.17) (0.13 0.13) (0.85 0.73) 76 76 

 999 

 1000 
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TABLE 5. Evaluation of gauge and TMPA ResV and RT data uncertainty in pixels containing multiple 1001 

gauges. Analyses are done using daily rainfall estimates: ‘Mean inter-gauge correlation’ is the average 1002 

correlation between the gauge data within a pixel; ‘Mean gauge-TMPA correlation’ is the average 1003 

correlation between each gauge and the same TMPA value of that pixel; ‘Correlation mean gauge data – 1004 

TMPA’ is the correlation between the averaged gauge data within a pixel and the respective TMPA values; 1005 

‘Mean standard deviation gauge data’ is the average standard deviation (mm/day) between the gauge 1006 

measurements in a pixel; and ‘TMPA Residual Standard Error’ is the square root of the mean squared 1007 

residual (mm/day) in the linear model for TMPA with gauge data as independent variable. 1008 

  
Mean inter-

gauge 
correlation 

Mean gauge-
TMPA 

correlation 

Correlation 
mean gauge 
data - TMPA 

Mean standard 
deviation 

gauge data 

TMPA Residual 
Standard Error 

ResV 

One 4-gauge pixel  
699 days 

0.293 0.335 0.472 4.03 4.74 

Five 2-gauge pixels 
2900 days 

0.399 0.399 0.473 2.44 5.22 

RT 

One 4-gauge pixel 
724 days 

0.296 0.336 0.470 3.92 3.86 

Five 2-gauge pixels 
2927 days 

0.395 0.385 0.458 2.42 3.28 

 1009 



52 
 

TABLE 6. Evaluation of TMPA ResV and RT products at 3-h resolution. Analyses are based on data from the 13 gauges we maintain (indicated 1010 

in Fig. 4) during two rainy seasons in 2016 when available (March-May, September-November). The number of observations used for analyses 1011 

in each category is given under ‘Time Stamps’.  A: Averaged results for the selected gauges and time period. B: Intensity groups, all in mm/day 1012 

(bold numbers referring to the thresholds used for the calculation of HSS, POD, and POFA).  1013 

 1014 

    COR NME NMAE NRMSE HSS POD POFA Time Stamps 

    ResV RT ResV RT ResV RT ResV RT ResV RT ResV RT ResV RT ResV RT 

A. Average 0.33 0.34 -16.59 -34.49 127.32 115.57 501.54 473.23 0.36 0.36 0.41 0.41 0.47 0.47 
16952 16952 

(Stdev) (0.07) (0.07) (23.75) (17.60) (13.79) (8.95) (59.01) (55.30) (0.04) (0.04) (0.04) (0.04) (0.08) (0.08) 

B. 0 mm/3 hr NA NA NA NA NA NA NA NA 0.37 0.37 0.41 0.41 0.46 0.46 14006 14006 

>0-5 mm/3 hr 0.21 0.24 35.63 3.69 158.26 129.92 312.56 228.61 0.27 0.25 0.27 0.22 0.68 0.64 2333 2333 

5-25 mm/3 hr 0.10 0.12 -66.43 -73.18 78.28 79.65 93.86 94.34 0.00 0.02 0.00 0.01 1.00 0.80 539 539 

>25 mm/3 hr 0.15 0.06 -87.81 -89.29 87.81 89.37 93.27 95.06 (0.00 0.02) (0.00 0.01) (1.00 0.80) 74 74 

 1015 
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TABLE 7. Evaluation of monthly TMPA ResV and RT products. The number of months used for analyses in each category is given under ‘Months’.  1016 

A: Regionally calculated metrics (all gauge data in Fig. 3 are used). B: Evaluation in different contexts on the ground. Mixed: pixels that include large 1017 

water bodies, Co. Topogr.: complex topographic terrain, Low: relatively low terrain. For each of these contexts four gauges have been selected 1018 

(indicated in Fig. 3, Fig. 4).   1019 

 1020 

    COR NME NMAE NRMSE Months 

    ResV RT ResV RT ResV RT ResV RT ResV RT 

A. Regional 0.70 0.69 -15.64 -41.09 38.92 50.21 52.97 65.57 
3008 2829 

(Stdev) (0.18) (0.19) (18.37) (14.10) (10.52) (9.68) (14.53) (12.63) 

B. Mixed 0.85 0.84 -8.03 -44.28 26.29 47.77 36.91 59.17 75 75 

Co. topogr. 0.51 0.45 -34.07 -45.20 52.66 60.24 69.35 77.73 144 147 

Low 0.76 0.80 -4.36 -25.12 37.13 38.60 54.25 54.00 441 415 

1021 
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Table A1. List of acronyms and abbreviations used in this paper. 1022 

COR Pearson Correlation Coefficient  

DR Congo Democratic Republic of Congo 

GPCC Global Precipitation Climatology Centre  

HSS Heidke Skill Score  

IMERG Integrated Multi-satellitE Retrievals for Global Precipitation Measurement 

ITCZ Intertropical Convergence Zone  

NMAE Normalized Mean Absolute Error  

NME Normalized Mean Error  

NRMSE Normalized Root Mean Square Error  

POD Probability of Detection  

POFA Probability of False Alarm  

PR Precipitation Radar   

QQ Quantile-Quantile  

ResV Research Version 

ResSE Residual Standard Error 

RT Near Real-Time  

SRE Satellite Rainfall Estimate  

TMI TRMM Microwave Imager  

TMPA TRMM Multi-satellite Precipitation Analysis  

TRMM Tropical Rainfall Measuring Mission   

  
 1023 

 1024 

 1025 

 1026 

 1027 

 1028 

 1029 

 1030 

 1031 
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FIGURES 1032 

 1033 

FIG. 1. Surface pressure patterns, airstreams and convergence zones that affect the climate in 1034 

the study area (modified after Nicholson 1996; Gasse et al. 2008). SAA = South Atlantic 1035 

Anticyclone, AA = Arabian Anticyclone, SIA = South Indian Anticyclone, WAM = West 1036 

African Monsoon, NEM = northerly East African monsoon, SEM = southerly East African 1037 

monsoon, ITCZ = Intertropical Convergence Zone, CAB = Congo Air Boundary (red: 1038 

July/August, green: December). Tropical climate types are according to the Köppen-Geiger 1039 

classification (Peel et al. 2007). 1040 
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 1041 

 1042 

FIG. 2. Rainfall seasonality and distribution of landslide events (LS) in the study area. The 1043 

dashed line highlights the 100 mm monthly average rainfall threshold that was used to group 1044 

the analyses in wet and dry months. The presented mean monthly rainfall is based on 20 years 1045 

(1998-2018) TMPA 3B42 daily data. Modified after Monsieurs et al. (2018). 1046 
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 1047 

 1048 

 1049 

 1050 

 1051 

 1052 

 1053 

 1054 

 1055 

 1056 

 1057 

 1058 

 1059 

 1060 

 1061 

FIG. 3. Spatial distribution of rain gauges in the study area with a temporal resolution of 24 h or 1062 

better. Gauges represented as triangles refer to the selected gauges for the validation in distinct 1063 

contexts on the ground: Black = Topographic complex terrain, Green = Presence of large water 1064 
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bodies, Orange = Relative low-altitude continental environment. Numbers and colours refer to 1065 

gauge codes in Fig. 4. Numbers in the lakes: 1 = Lake Edward, 2 = Lake Kivu, 3 = Lake 1066 

Tanganyika. Background hillshade SRTM (90m). 1067 
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 1068 

 1069 

 1070 

 1071 

 1072 

 1073 

 1074 

 1075 

 1076 

 1077 

 1078 

 1079 

 1080 

 1081 

 1082 

FIG. 4. Temporal characterization of rain gauge data from 1/1/1998 to 1/1/2018. Gauge codes refer 1083 

to the numbers on the map in Fig. 3 with an additional land code: BU = Burundi, DRC = DR 1084 

Congo, RW = Rwanda, UG = Uganda. Gauges installed and maintained by the authors are light 1085 
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blue, gauge data collected from other sources are dark blue. Periods that contain suspicious data 1086 

are shaded light orange, data gaps are shaded grey. The coloured boxes refer to the selected periods 1087 

and gauges used for the validation in distinct contexts on the ground: Black = Topographic 1088 

complex terrain, Green = Presence of large water bodies, Orange = Relative low continental 1089 

environment. 1090 

 1091 

 1092 

 1093 
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 1094 

FIG. 5. Quantile-quantile plot for daily rainfall measured by the gauges and the equivalent TMPA 1095 

data based on the availability of rain gauge data in that pixel for the entire study area. The full 1096 

black line presents the 1:1 line. TMPA distributions significantly differ from that of gauge data, of 1097 

which the Near Real-Time TMPA product (RT) deviates more than the TMPA Research Version 1098 

product (ResV).  1099 
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 1100 

 1101 

 1102 

 1103 

 1104 

 1105 

 1106 

 1107 

 1108 

 1109 

FIG. 6. Daily rainfall time series from 4 September to 4 October 2015 for four gauges located in 1110 

one TMPA pixel that is located over the Rwenzori Mountains and, together with the TMPA 1111 

estimates of this pixel (Fig. 3). This presents the variability in observed rainfall in a 25 km x 25 1112 

km area. 1113 

 1114 

 1115 

 1116 

 1117 



63 
 

 1118 

 1119 

 1120 

 1121 

 1122 

 1123 

 1124 

 1125 

 1126 

 1127 

 1128 

 1129 

FIG. 7. Extreme daily rainfall recorded by the gauges and by TMPA between 2000 and 2018 based 1130 

on the availability of rain gauge data in the corresponding TMPA pixel. A: Scatterplot of the top 1131 

100 daily rainfall events as measured by the gauges, indicating that each of these events is 1132 

underestimated by TMPA ResV and the RT data. B: Scatterplot of the top 100 daily rainfall events 1133 

recorded by TMPA ResV. The bias correction of TMPA ResV through calibration with gauges on 1134 

a monthly basis is clearly visible as a shift between RT and ResV. The top ten most extreme rainfall 1135 

events (1 = most extreme) measured by (C) the gauges and (D) TMPA ResV were matched with 1136 
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reported hydrometeorological hazards, if available: F: Flood, FF: Flash Flood, LS: Landslide. The 1137 

corresponding rainfall measured by the gauge, TMPA ResV and RT in the same pixel are also 1138 

shown. 1139 

 1140 

 1141 

 1142 

 1143 

 1144 

 1145 

 1146 

 1147 

 1148 

 1149 

 1150 

 1151 

 1152 

 1153 
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FIG. A2. Top ten most extreme rainfall events (1 = most extreme) measured between 2000 and 1154 

2018 by TMPA Near Real-Time (RT) were matched with reported hydrometeorological hazards, 1155 

if available: F: Flood, LS: Landslide. The corresponding rainfall measured by the gauge in the 1156 

same pixel (G) as well as the TMPA Research Version (ResV) are also shown. 1157 

 1158 


